

September 9, 2014

Introduction - Tevatron @ Fermilab

• $p - \bar{p}$ Collider with $\sqrt{s} = 1.96$ TeV

ullet Run II ended in Sep. 2011 $\mathcal{L}^{int} pprox 10 \ \mathrm{fb^{-1}}$ available for CDF and D0 experiments

Introduction - Top Quark Production at Tevatron

- Top Quark (t) discovered at Tevatron in 1995 PRL 74 2626, PRL 74 2632 (1995)
- QCD SM $\sigma_{p\bar{p}\to t\bar{t}}^{SM} = 7.35^{+0.28}_{-0.33}$ © NNLO + NNLL for $m_t = 172.5$ GeV PRL 110, 252004 (2013)

Quark-Antiquark annihilation is dominant at Tevatron: 85% of total cross section

- EWK Single Top Production: first observed in 2009 (PRL 103 092001, PRL 103 092002 (2009))
- $\sigma_{s-chan} = 1.06 \pm 0.06 \text{ pb}$
- $\sigma_{t-chan} = 2.1 \pm 0.1 \text{ pb}$
- $\sigma_{Wt-chan} = 0.22 \pm 0.08$ pb, too small to be isolated at Tevatron

PRD 83, 091503 (2011); PRD 81, 054028 (2010); PRD 82, 054018 (2010); arxiv:1210.7813 (2012)

Why study Single Top production?

- Allows direct measurement of the CKM matrix element $|V_{tb}|$
- $V_{tb}^{meas} = \sqrt{\sigma_{meas}/\sigma_{theory}}$ in SM $\sigma_{theory}
 ightarrow |V_{tb}| = 1$
- Is it a 3x3 matrix? Why not a 4x3, 3x4, 4x4 or even larger?
- Is it unitary? \rightarrow $|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$?
- First two rows in agreement with CKM unitarity from B meson decays precision measurements

Direct Measurements: see other talks

$$V_{CKM} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Ratio Constrained from Bs oscillations

Measured under certain assumptions

Why study Single Top production? Not only for CKM!

- Test of Standard Model prediction
 - probe V-A coupling structure
 - Top quark spin access
- Target New Physics
 - Anomalous couplings
 - Presence of heavy charged bosons W'. H^+ (s-channel)
 - Flavour Changing Neutral Currents (FCNC) through Z['] (t-channel)

Single Top Tevatron Analysis - Outline

- Very rare process at Tevatron: $S/B \sim 1/10^9$
- Topological event selection and b-jet identification: $\rightarrow S/B \sim 1/20$
- Very accurate background estimate is needed
- Major Backgrounds:
 - W+Jets: Shape from MC, Normalisation from Data
 - Dibosons, Z+jets, tt̄:
 From Simulation
 - Multijet: Data driven shape and normalisation

Single Top Tevatron Analysis - Outline

W+Jets Selection (D0 and CDF):

- One high- p_T isolated lepton (e/μ)
- Large $\not\!\!E_T$ from the ν
- 2 or 3 high-p_T jets, with at least one identified as b-jet

#_T+Jets Selection (CDF):

- High-∉_T and lepton veto
- 2 or 3 high-p_T jets, with at least one identified as b-jet
- Orthogonal to W+jets selection (+33% acceptance)

- Signal hidden behind large backgrounds with large uncertainties
- No single variable provides enough discriminating power to separate S from B
- Multivariate techniques are used, trained separately for s- and t-channel
- Cross section extracted from a binned likelihood fit on the combined discriminant

Single top s+t channel $l\nu b\bar{b}$ Final State

- Total Luminosity: 7.5 fb⁻¹
- 4 sub-channel according to N_{tags}/N_{iets}
- ullet Samples with shifted systematics included in the artificial NN training o 3% resolution improvement
- Control region for background validation: 0
 b-jet sample
- Binned Likelihood fit on the NN output.
 Bayesian posterior assuming non negative prior

$$\sigma_{st} = 3.04^{+0.57}_{-0.53} \text{ pb}$$

CDF pub. Note 10793 Submitted to PRL

Extraction of $V_{tb} l \nu b \bar{b}$ Final State

- Since $\sigma_{st} \propto |V_{tb}|^2 \to \text{Flat prior within } 0 \leq |V_{tb}|^2 \leq 1$, Bayesian posterior
- SM Assumptions:
 - CKM elements hierarchy: $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$
 - CP conserving and V-A nature of Wtb vertex
- No assumption on number of generations or unitarity
- Complementary with indirect $|V_{tb}|$ measurement (see later in the Talk!)

Results:

- $|V_{tb}| = 0.95 \pm 0.09 \text{ (stat+syst)} \pm 0.05 \text{ (theo)}$
- $|V_{tb}| > 0.78(95\%)$ C.L.

Single Top $\not\!\!E_T b \bar b$ s+t analysis

- Total Luminosity (9.5 fb⁻1)
- ullet Recovers events where the lepton are lost or $W
 ightarrow au
 u_{ au}$
- Use of new multivariate b-jet identification algorithm: HOBIT
- 1D MVA discriminant obtained from the combination of MVAs for s- and t-channel separately
- Serie of NNs used against QCD, V+jets and $t\bar{t}$ bkgs
- The total cross section is extracted assuming SM σ_s/σ_t CDF pub. Note 11033

Single top s+t CDF combination

- The $l\nu b\bar{b}$ and $\not\!\!E_T b\bar{b}$ channels are statistically independent
- The two analyses shown have been combined for more accurate cross section measurement and stronger lower limit on $|V_{tb}|$
- The results are combined multiplying the Likelihood, simultaneously varying the correlated uncertainties.
- The combined measurement results in an $\sigma_{s+t} = 3.02^{0.49}_{-0.48}$ pb.

 $|V_{tb}| > 0.84$ at 95% C.L

pub. Note 11033

Single top s+t channel $l\nu b\bar{b}$ Final State

- Total Luminosity: 9.7 fb⁻¹
- Possibility of an anomalous strength of the left-handed Wtb coupling (f₁^L)
- Three MVA with BDT, ME and BNN combined in a single discriminant through a BNN.
- Separate discriminants for s- and t-channel, D_s^{comb} and D_t^{comb} respectively. A 2D discriminant is then formed.
- Integration over σ_t (σ_s) and extract σ_s (σ_t)
- 2D posterior D_{s+t}^{comb} is then formed versus σ_t . Measurement of σ_{s+t} obtained integrating on σ_t . No assumption on σ_s/σ_t is made

$$\begin{array}{l} |V_{tb}f_1^L| = 1.12^{+0.09}_{-0.08} \text{ (stat+syst)} \\ \text{SM: } f_1^L = 1 \rightarrow |V_{tb}| > 0.92 \text{ 95\% C.L} \end{array}$$

Phys. Lett. B 726, 656 (2013)

CDF s-channel optimised analyses

- Two new analyses for s-channel in I+jets and $\not\!\!E_T$ +jets final state with 9.4 fb⁻¹
- Based on $H \to b\bar{b}$ searches techniques. Multivariate b-tagger HOBIT with tight (T) and loose (L) working points
- NN optimised for s-channel event topology. t-channel is part of the bkg, with normalisation from theory

PRL 112, 231804 (2014)

PRL 112, 231805 (2014)

$$\sigma_s = 1.12^{+0.61}_{-0.57} \text{ (stat+syst) pb}$$

Tevatron s-channel combination

- The results of the CDF and D0 analyses on the s-channel have been combined
- First observation of s-channel single top (significance 6.3 standard deviations)
- Systematics common to both experiments are taken as 100% correlated, the others are treated as uncorrelated

CDF		D0		Corre-
Norm	Dist	Norm	Dist	lated
4.5%		4.5%		No
4.0%		4.0%		Yes
2-10%	•	3-8%		Yes
2-12%	•	2-11%	•	Yes
15-40%	•	19 – 50%	•	No
2-10%	•	1-5%	•	No
10 – 30%		5-40%	•	No
0-20%	•	0-40%	•	No
	Norm 4.5% 4.0% 2-10% 2-12% 15-40% 2-10% 10-30%	$\begin{array}{c c} \text{Norm} & \text{Dist} \\ \hline 4.5\% & \\ 4.0\% & \\ 2-10\% & \bullet \\ 2-12\% & \bullet \\ 15-40\% & \bullet \\ 2-10\% & \bullet \\ 10-30\% & \\ \end{array}$	$\begin{array}{c cccc} Norm & Dist & Norm \\ 4.5\% & 4.5\% & 4.0\% \\ 2-10\% & & 3-8\% \\ 2-12\% & & 2-11\% \\ 15-40\% & & 19-50\% \\ 2-10\% & & 1-5\% \\ 10-30\% & & 5-40\% \\ \end{array}$	$\begin{array}{c cccc} Norm & Dist & Norm & Dist \\ 4.5\% & & & & 4.5\% \\ 4.0\% & & 4.0\% & & \\ 2-10\% & & & 3-8\% & & \\ 2-12\% & & & 2-11\% & & \\ 15-40\% & & & 1-50\% & & \\ 10-30\% & & & 1-5\% & & \\ \end{array}$

1.36 +0.37

1.10 +0.33

1.29 +0.26

Cross section [pb]

CDF combined

Tevatron combined

Theory (NLO+NNLL)

1.05 ± 0.08 pb [PRD 81, 054028, 2010

0

m_{mc} = 172.5 GeV

Cross se

D0 /+iets

PRL 112 231803 (2014)

Indirect Measurements of V_{tb}

- The t quark decay rate through the production of a W boson and a down type quark q = d, s, b is proportional to $|V_{tq}|$
- In the SM $t \to Wb \approx 100\%$ of the times
- Using top pairs event produced at Tevatron, it is possible to measure the actual ratio and an indirect measurement on V_{tb} can be extracted

$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

ullet Under the assumption of a 3x3 unitary CKM ightarrow $R=|V_{tb}^2|$

Indirect Measurements of V_{tb} - Lepton+Jets/Dilepton

- Total luminosity: 5.4 fb⁻¹
- Combination of High- p_T lep (e/μ) and jets and dileptonic final state
- Use of a NN b-tagger to identify jets originating from b-quarks.
- Additional MVA in /+Jets sample to discriminate S from B
- New MC are generated with final state $t\bar{t} \to WbWq$ and $t\bar{t} \to WqWq$.
- Binned likelihood fit on the subsamples and the b-tagger NN output. Simultaneous fit on the $\sigma_{p\bar{p} \to t\bar{t}}$
- FC prescription for limit extraction

Indirect measurements of V_{tb} - Lepton + Jets

- High-pT lepton (e/μ) and large $\not\!\!E_T$ sample
- Final state subdivided in channels according to number of jets/b-jets
- Counting experiment and simultaneous Likelihood fit on the observed events
- Simultaneous measurement of $\sigma_{p\bar{p}\to t\bar{t}}$. For $|V_{tb}|$ limits: prior flat in R within [0,1]
- Signal MC for $t\bar{t}$ is generated using $|V_{th}|=1$
 - Each jet originated from t and truth matched to b get assigned a probability P_b < R
 - Simulate a configuration where t decays in light flavour jet with probability 1 – R times

$$V_{tb} = 0.97 \pm 0.05 \text{ (stat+syst)}$$

 $V_{tb} > 0.89 \text{ at } 95\% \text{ C.L.}$

PRD 87 111101(2013)

Indirect measurements of V_{tb} - Dilepton

- Dileptonic final state with large $\not\equiv_{\mathcal{T}}$
- High purity $t\bar{t}$ signal in selected sample \rightarrow measurement $\sigma_{p\bar{p}\rightarrow t\bar{t}}=7.64\pm0.55$ (stat) pb, free of $\mathcal{B}(t\rightarrow Wb)$ assumptions
- Measured $\sigma_{p\bar{p}\to t\bar{t}}$ is used to constraint the signal in the sub-channels $(ee), (e\mu), (\mu\mu)/N_{b-jets}$

$$V_{tb} = 0.93 \pm 0.04 \text{ (stat+syst)} \ V_{tb} > 0.85 \text{ at } 95\% \text{ C.L.}$$

PRL 112 221801 (2014)

Summary and Conclusions

Summary

- t quark first observed by CDF and D0 in 1995. Single top in 2009
- During years, more refined measurements of top properties
- \bullet Direct and indirect measurements of V_{tb} have been presented
- CDF single top program is almost complete
- Combination of the CDF R measurement is under way.

Experiment	Type	$ V_{tb} $	$ V_{tb} >$ @ 95% C.L
CDF	Single top (s+t) /+jets	0.95 ± 0.10	0.78
CDF	Single top $\not\!\!E_T$ +jets	-	0.63
CDF	Single top (s+t) combo	-	0.84
D0	Single top (s+t)	$1.12^{+0.09}_{-0.08}$	0.92
CDF+D0	Single top (s)	1.05 ± 0.11	-
CDF	$t\bar{t}$ /+jets	0.97 ± 0.05	0.89
CDF	t T //	0.93 ± 0.04	0.85
D0	t₹ /+jets///	0.95 ± 0.02	0.96
			10 / 10

BACKUP

New Physics extensions to CKM matrix

 Theoretically a 3x3 unitary CKM matrix leaves no room for low values of V_{tb}.

$$|V_{tb}| = 0.999138^{+0.000052}_{-0.000030}$$

- Lower values of $|V_{tb}|$ can be obtained with different BSM mechanisms
 - Presence of a single extra vector-like quark (t', b'), respectively up/down type (4x3,3x4 CKM matrix)
 - Presence of a full SU(2)xU(1) forth generation

$$V_{CKM}^{'} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \ V_{td} & V_{ts} & V_{tb} & V_{tb'} \ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix}$$

Eur. Phys. J. C49 791-801 (2007)

Last Tevatron limits on CKM extensions

• Single Vector Like t' searches

- /+jets at 5.4 fb⁻¹
- Coupling $k_{qQ} = \frac{v}{m_Q} \tilde{k}_{qQ}$. Focusing on $t' \rightarrow Wq$
- Discriminating variable: M_T^Q

• Chiral b' 4th Gen. searches

- Analysis in $l+\geq 5$ jets ($\geq 1b$) at 4.8 fb^{-1}
- Analysis for $b' \rightarrow Wt$
- Discriminating variable:

• Chiral t' 4th Gen. searches

- m(b') + m(W) > m(t')
- Analysis for both $t' \rightarrow Wq$ and $t' \rightarrow Wh$ at 5.6 fb⁻¹
- 2D binned likelihood fit on H_T and M_{reco}

PRL 106 141803 (2011)

PRL 107 261801 (2011)

Observed 95% CL

HOBIT - Slide Courtesy of M.Cremonesi (Moriond QCD - March 2014)

- ullet A new b-jet identification algorithm optimized for $H o bar{b}$ searches is employed: HOBIT
- Incorporates all the features of the previous CDF b-taggers
- Two different HOBIT cuts are used: tight b-tag (T) and loose b-tag (L)

Introduction - Top Quark Discovery

- Top-Quark (t) has been discovered through strong interaction at Tevatron in 1995. (PRL 74 2626 (1995) , PRL 74 2632 (1995))
 - CDF: Likelihood Fit on the M_t
 - D0: Background only fit on the H_T and fit on M_t
- In 2009 single-top production via electroweak interaction has been discovered by CDF and D0 experiments
- Cross section measurement obtained from a binned likelihood fit on a Neural Network (NN) discriminant

Introduction - Top Quark

• Top Quark Discovery (D0): $H_T = \sum_T E_T^{jets} \text{ In the single lepton or } \mu\mu \text{ channel} \\ H_T = E_T^{leading-e} + \sum_T E_T^{jets} \text{ in the } e\mu \text{ and } ee \text{ channels}$